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1 Basic Machine Learning
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Machine Learning

2
1 Machine learning is rising rapidly in recent days

The Rise of Machine Learning

0.0000600%
mac hine learning
0.0000550%
0.0000500% ~
0.0000450% ~
0.0000400% 4
0.0000350%
0.0000300% ~
0.0000250%
0.0000200%
0.0000150% ~
0.0000100% A

0.0000050% ! 3
actuarial science

000000000/0 T ) T T T T T T T T T
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

What the y-axis shows is this: of all the bigrams (two word letter combinations) contained in Google’s sample of
books written in English, what percentage of them are "machine learning" or "actuarial science"?



Recent Trend
8 |

deep learning
Search term

‘ machine learning

Search term



What Computers Can Do?

Programs can do the things you ask them to do



Program for Solving Tasks
JEREC I

0 Task: predicting positive or negative given a product review

“I' love this product!” “It claims too much.” “It’s a little expensive.”

lpr‘ogram.py l program.py l program.py
+ - ?
if input contains “love”, “like”, etc.  if input contains “too much”, “bad”, etc.
output = positive output = negative
"eEE— K Em!” "FRAR YRR "BrNE (I RBTBRE"
l program.py l program.py l program.py
{3 IS ?



Learning = Looking for a Function
JEREE N

0 Task: predicting positive or negative given a product review

“I' love this product!” “It claims too much.” “It’s a little expensive.”

1 f I f I f

+ - ?
"eEE— K Em!” "FRAR YRR "BrNE (I RBTBRE"

1 f bt If

{3 IS



Learning = Looking for a Function

O Speech Recognition

L= )=
o0 Image Recogmtlon
f( X )= cat
o Go Playing
f( )= 5-5 (next move)

f( "ERBREEEE" )= W5

IR R AT IZE




Image Recognition:

Framework f( N )= “cat”

<
A st of
function f,f, -




Image Recognition:

Framework £

Goodness of
function f

Y

Training
Data




Image Recognition:

Framework f(M2

(lcatll

Goodness 0f1 Pick the “Best” Functionl

Wnctionf J £

Training
Data

g

_ Training is to pick the best function given the observed data = ——
| Testing is to predict the label using the learned function |




Why to Learn Machine Learning?

0 Al Age
o Al can work for most of labor work?

o New job market = | A| 2l 78 B

(Machine Learning Expert HaREEER
Data Scientist E R R )
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AITIETRE Al G AREM
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N 2__ Step 2: . Step 3: pick
= 7 goodness of the best
AI I:IJ H “‘ER El—ﬁ function function

s
0 B o] =5/l 4REM o Al 5| ZR B

o PHEES S T SR o 7E step 1 - Al ARETZE Hh i
 EOEERENEY EECENIEHE

o BN BT E R — B E s AEREES RIEAE
= E.g. /NEROTE K B R

> EE P B O ]fn—affﬁﬁ step 3 L best

m E.g. Deep Learning
> B BRI
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Machine Learning Map

Scenario Task Method
Regression Semi-Supervised Learning
Linear Model Transfer Learning
Deep Learning SVM, Decision : :
Unsupervised Learning

Tree, KNN, etc

Non-Linear Model

Classification Reinforcement Learning

Supervised Learning




Machine Learning Map

Scenario Task Method

Regression The output of the target function f is a “scalar”.

—{EgE




Regression
24

o Stock Market Forecast

) = Dow Jones Industrial
Average at tomorrow

|

It
af
i
@

1 Recommendation

f(C FAEA ®BmB )= BEamEH



Example Application

0 Estimating the Combat Power (CP) of a pokemon
after evolution

CP after
evolution y

f(

Xs |Bulbasaur] X
2,

Grass / Poison 11.62 5z I I 0.88m I
t Height

we B A W




Step 1: Model

2
/y =b+w- xCp w and b are parameters
Model (can be any value)
ode
b2 fy=9.8+9.2-x,
fyry=-0.8-1.2"x,
...... infinite
CP after
FO ) = |
Bu|b§s§ur eVO|Ut|0n
\ X;: an attribute of

Linear model:  y =b + z w;x; IMPUtX | feature
w;: weight, b: bias




Step 2: Goodness of Function
25 |

y=b+w:-xcp

fgnctlon function
input: output (scalar):
f, f,-

A set of
function

Training
Data 1Eevieel

HP81/81 HP94/94




Step 2: Goodness of Function
o2 J

0 Training data . . . . . .

1600 4 i
o 15t pokemon: ’
(', 9%) 100 - '
o 2" pokemon: ¢ 1200 - I
2 2 =
(x%,9%) % 1000 - (xn An) N
5 500 cp;” :
e \ ,
('
o 10t pokemon: ~ g - .® I
10 510
(x ’y ) A 0 A - [ ] =
y
L
0 9 T T T T T T
This is real data. ° 1o 200 300 400 300 B0 700
Original CE‘C
cp

Source: https://www.openintro.org/stat/data/?data=pokemon



Step 2: Goodness of Function

y:b‘l‘W'xCp

<
A set of
function f,f, -

1 Loss function L:
{Goodness of} Input: a function, output: how bad it is

function f
L(f) = L(w, b) Estimated y based
Y 10 on input function
2
Training = z tj}n — (b +w - X?p_))
Data =1

Estimation error
Sum over examples



Step 2: Goodness of Function
o2 4

10
o Loss Function L(w,b) = z (yn —(b+w- xpp))2

n=1

Each point in the
figure is a function

smallest

The color represents
L(w,b)

-4 1 Very large -

=200 —180 —160 —140 —120

b



Step 3: Best Function

29
L(w,b)
A set of . an on
D

1

[Goodness of |Pick the “Best” Functionl
function f _ g
‘ w*, b* = arg min L(w, b) Descent
Training Wb 10
Data = arg min z (j?" — (b +w - x?p))z
w,b

n=1



Step 3: Gradient Descent
_ 30 |

o Consider loss function L(w) with one parameter w:
w* = arg min L(w)
w
» (Randomly) Pick an initial value w°

dL
» Compute ——|,,_,0

Negative - Increase w
T =)

Decrease w

M



Step 3: Gradient Descent
_ 31|

o Consider loss function L(w) with one parameter w:
w* = arg min L(w)
w
» (Randomly) Pick an initial value w°

o, o _dL

» Comput
Wh e w? =1 =

e_lw =w

Loss

n is called
“learning rate” v W




Step 3: Gradient Descent
o2 4

o Consider loss function L(w) with one parameter w:
w* = arg min L(w)
w
» (Randomly) Pick an initial value w°

dL
aL dL
Loss » Compute dw |W=WO wl « w0 — n—- dw |W=w°
L(w) dL
» Compute —|,, =1 5 dL
aw w? « wl —r]dW|W=W1

...... Many iteration

not global
optimal




Step 3: Gradient Descent

0 How about two parameters? . 1% .
P w*, b* = arg min L(w, b)

w,b
» (Randomly) Pick an initial value w©, b°
> Computeﬂ w=w0,b=bofz_zlw=w°,b=b°
wh «w? — ng_‘i; w=w? b=p° b' « b° — Ug—z lw=w0 p=p0
> Compute—|w —wlp=bl, Zb|w —wlp=pl
w? « wl —naLl 1p-pt  b? < bl naL| 4
aWWW’b_b abWWbb
,,,,,,,,,,,,,,,,,,,,,,, —
VL = % gradient
| ob




Step 3: Gradient Descent
A

Color: Value of loss L(w, b)

= 15.000° =0T —ZI505 |
1350 N
10.500 :

— 2.00p

(—n dL/db, —n AL /ow)

0%

13‘500 — , N cog
Compute dL/0b, 0L/0ow

19.500 -




Step 3: Gradient Descent
o35 4

o Local optimal

O Loss function is convex in linear regression

Linear regression =
No local optimal

10

g
’s‘1 W
\\ (77 o N
0‘ \\\\\\‘2‘;'/?/'7,"':05\
‘\\“ \\( /f"‘\




Step 3: Gradient Descent

o Formulation of dL/0w and dL/0b

10
L(w,b) = z yt— (b +w-x?p)
n=1

oL .

o= 22(y”—(b+w Xy )
n=1

oL



Step 3: Gradient Descent

7y

o Formulation of dL/0w and dL/0b

10
L(w,b) = Z yt— (b +W°x?p)
n=1



Learned Model
N

Training Data

y p— b —I— W - xCp i i i i i i
1ad0 -
b=-188.4 1400 -
~ 1200 -
w=2.7 2
5 1000 -
=]
Average Error on S 800 -
Training Data £
o B00 -
10 -
400 +
— n —
= 2 e =31.9 200
n=1 D = - I I I I I I
0 100 200 300 400 500 600 700

Original CP



What we really care about

MOdel Generahzatlon is the error on new data

(testing data)

Another 10 pokemons as testing data

Yy = b+w- xCp
1600 - . I
b=-188.4 1400 - -
= 1200 - |
w=2.7 2
3 1000 - "
Aver-age Error on % 800 - i
Testing Data &
2 600 - |
10 U
400 - |
— n _
n=1
0 += T T T T

> Average Erroron 0 100 200 300 400 500 600 700
. . Original CP
Training Data (31.9)



Model Generalization

1a00

1 Select another model

n
]
=]
=]

y=b+w1-xcp+wz-(xcp)2

1000 -

CP after evoluatio

o Best function
b =—-10.3, Wy = 1.0, Wy, = 27%1073 o-

L) 1 L) L) 1 L)
H 100 200 300 400 500 GO0 700
Original CP
i i

Average Error =15.4 1600 |

0 Testing
Average Error = 18.4

CP after evoluation
=
[=]

— T T T T T T
0 100 200 300 400 500 GO0 700
Original CP



Model Generalization

0 Select another model ]
2 = 1200
y=b+W1'xcp+W2 '(xcp) % oo |
3 E

+W3 y (xCp) E 800
o Best function

b=64,w; =0.66,w, =43 X 10_3' 'S w0 20  me 0 H0 o 70

W3 = 1.8 x 10_6 | . Original CP

Average Error =15.3 1400 -
o Testing
Average Error = 18.1 § =
Slightly better. T -
How about more complex model? m‘;:

Original CP



Model Generalization

o Select another model .

2 = 1200

y=b+w1-xcp+wz-(xcp) g

3 4 B

+wsy - (xcp) + wy - (xcp) 5

0 Best function
Average Error = 14.9 U w0 @m0 #0 w0 @0 e

o Testing

1200 ~

Average Error = 28.8

1000 A

CP after evoluation
=
[=1

200 H

L) 1 1 L) L) L)
0 100 200 300 400 500 G00 700
Original CP



Model Generalization

43
o Select another model . f
2 = 1200
y=b+w1-xcp+wz-(xcp) E
3 4 E
+wsy - (xcp) + wy - (xcp) 5
5 T 600
+ws - (xcp) - 1_/\
, e u——
D Best functlon o 100 200 ﬂriginalg-gﬂ 500 600 700
Average Error = 12.8 . s
0 Testing 2 o
Average Error = 232.1 £ . .
"""""" The results are so bad " /_/\ |

T T
o 100 200 30 400 500 G000 700
Original CP



Model Selection =

5]
=

P
(%]

Average Error
ol
=

[
[%]

1_ y=b+W’xcp

=
o

= (%]

2. y=b+W1'xcp+W2'(xCp)2

3. y=b+W1'xcp+W2'(xcp)2

TWs (’Ccp)3 \

4 y=b+w1-xcp+W2-(xcp)2/
' 3 4
+W3 . (xcp) + Wy (xcp)

y:b+W1'xcp+W2‘(xcp)2

Training Data

; . A more complex model yields
+ws + (xcp)” + wa - (xcp) lower error on training data.

5
+ws - (xcp) If we can truly find the best function



Machine Learning Map

Scenario Task Method

Regression

Classification




Classification

S
0 Binary Classification o Multi-Class Classification

Yes / No Class 1, Class 2, ..., Class N

* *

* *

Input Input




Binary Classification — Spam Filtering

“Talk” in e-mail\

/E‘@"\L*
> A » Model » 1/0
=" (Yes/No)
“free” in e-mail/v
~ 0(No)

(http://spam-filter-review.toptenreviews.com/)



Multi-Class — Image Recognition
_ 48|

“monkey”

o
» Model »E/ -
B\

lldog”




Multi-Class — Topic Classification
49|

“stock” in document
~ [«/

http://top-breaking-news.com/



Machine Learning Map

Non-Linear Model

Classification

Scenario

Task

Method




Part |: Introduction to ML & DL
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0 Basic Deep Learning

[



Stacked Functions Learned by Machine
s

1 Production line (£ E4R)

Deep Learning Model

s Simple Simple Simple
Sl Functlon Funct|on Functlon
=itk

f: a very complex function




Three Steps for Deep Learning
s 4

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function




Three Steps for Deep Learning
s 4

Step 1: define a set of function

Neural Network




Neural Network
55|

Neuron

Z=aW, +---+aw +---+a,w,+Db

A simple function

Activation
function

bias




Neural Network

Neuron

2\1\
-1 ____-;\i::::>)
-1

‘ Activation
function

1 bias

0.98




Neural Network

Different connections lead to
different network structures

AN

o/t L1

The neurons have different values of
weights and biases.

NN

Weights and biases are network parameters 6



Fully Connected Feedforward Network




Fully Connected Feedforward Network

1 4 098 - 0.86 3
2/ 1/ _
0

1

0.62




Fully Connected Feedforward Network

0.72

; 1 :120.732_ 12 3-

0.51

nput vector outputvector | (-1) = [osa] 7 (o) = [oss!

Given parameters 0, define a function

Given network structure, define a function set



Fully Connect Feedforward Network

Deep means many hidden layers




Why Deep? Universality Theorem
ey
o Any continuous function f
f:RY >RV

can be realized by a network with only hidden layer
o (given enough hidden neurons)

Seeccebimooe
\\ \\ A\ 0 W ////;/’/ﬁ”
N\ e

Q
AR N
N h * 777
NN o 7
| i
Il i /
) I"'}/




Fat + Shallow v.s. Thin + Deep
_ 63 |

0 Two networks with the same number of parameters




Why Deep

_ 64|
0 Logic circuits o Neural network
o Consists of gates O consists of neurons
O A two layers of logic gates O A hidden layer network can
can represent any Boolean represent any continuous
function. function.

gates to build some functions neurons to represent some

o Using multiple layers of logic o Using multiple layers of
are much simpler ' functions are much simpler

‘ |Iess gates needed l

» less
parameters




Deep = Many Hidden Layers 5 22 ayers |

I I | o= -

 EC-TO00 B
| EC-t03@ wn e ol e
http://cs231n.stanford.e | EC-v03e :g:m
du/slides/winter1516 le M s
ture8.pdf '
CHres.p  coun-2rs E%Em
— T,
COUA-2TS e Eey
I 8 |ayerS ‘ COUA-2TS ;@ gggm
" wsxboo| .
7 39 ~ coun-52e 6.7% g;ﬁ;:m
.D/0 COUA-520
waxboo] gagge
COUA-TS8 Ex EQ
COUA-TS8 mmé;um
" wsxboo| B £
e o5 5 2
COUA-Q¢ ?
[ ke | s

AlexNet (2012) VGG (2014) GoogleNet (2014)



Deep = Many Hidden La =:rs

Special
structure

16.4%

AlexNet
(2012)

7.3%

VERREERBER R AER 1

VGG
(2014)

GoogieNet
(2014)

3.57% =

Residl Net
(2015)

Taipei
101




QOutput Layer
e J

0 Softmax layer as the output layer

Ordinary Layer

- In general, the output of

network can be any value.
L) m— O — yZZG(ZZ)

S

May not be easy to interpret

S



Output Layer

_ 68 |
Probability:
0 Softmax layer as the output layer B1>y;>0
mYiyi=1
Softmax Layer
3 ., 20 : 088 , /&,
Z, — - ———> y, =e"/ > e
j=1
3 Z
22 — Zy Ze J
j=
3
Ly _ z3/zeu
j=




Example Application

0 Input 0 Output

—,
:75 MG, 1
T : \\
|
EEENEES  EEN ’ ‘ IGERERE
- P, |S 11211
_émlllulllllli'p X
L 1 | 256
16x16=256
Ink 2> 1 Each dimension represents

Noink - O the confidence of a digit.



Example Application

0 Handwriting Digit Recognition

Xl y]_ iIs1
X, .

| . IS 2

affl » Neural RE:

i . ;| Network
X256 What is needed is a Yio SR
function ......
Input: output:

256-dim vector 10-dim vector



Example Application

Layer 1  Layer 2

A function set containing the

I 1

FEERE

|

candidates for

You need to decide the network structure to
let a good function in your function set.



FAQ

o2y
o Q: How many layers? How many neurons for each

layer?
Trial and Error ks

0 Q: Can we design the network structure?

Variants of Neural Networks
(next lecture)

0 Q: Can the structure be automatically determined?

Input Layer 1  Layer 2 Layer L Output

o Yes, but not widely studied yet.




Three Steps for Deep Learning
AE I

Step 2: goodness of function




Training Data

0 Preparing training data: images and their labels

>

115”

c:r

119”

o

2

IIO”

112”

L

H4”

o 1”

/

3

The learning target is defined on

the training data.

o 1”

113”



Learning Target

-"-/ l >X yl

Y, is 2

—

i P 1A 9 I A 1

16 x 16 = 256

Ink - 1 The learning target is ......

Noink - 0
Input: m) vy, has the maximum value
Input: # y, has the maximum value



/]

— v,
f' s )
: Loss -
...... —>y10 l 0

Loss can be square error or cross entropy between the network [ =ige=is
output and target




Total Loss

o For all training data ... Total Loss:

T Wy

2= NN —> y2 ¢ §7 As small as possible

Find a function in

L—f iamd ) amd U8 function set that
minimizes total loss L

Find the network
‘" mtlgnd’ Wl porometers 6 that

minimize total loss L




Three Steps for Deep Learning
S S

Step 3: pick the best function




How to pick the best function

Find network parameters 0 that minimize total loss L

Enumerate all possible values

Networ 0 =
{wy, wy, by, b3, -}
Milli eters

E.g. speech recognition: 8 layers and

1000
1000 neurons each layer 1000

neurons neurons



Network parameters 8 =

Gradient Descent ¢, . .. p b )
-=.

Find network parameters 0 that minimize total loss L

> Pick an initial value for w

Random, RBM pre-train

f Usually good enough




Network parameters 8 =

Gradient Descent ¢, . .. p b )

Find network parameters 0 that minimize total loss L

> Pick an initial value for w

Total » ,Compute dL/dw

Loss L % Negative # Increase w
'
V=N Positive ‘ Decrease w




Network parameters 8 =

Gradient Descent ¢, . .. p b )
e |

Find network parameters 0 that minimize total loss L

> Pick an initial value for w

» Compute dL/dw
W<« w —ndL/ow

Repeat

n is called
_ndL,/ow “learning rate” W




Network parameters 8 =

Gradient Descent ¢, . .. p b )
|

Find network parameters 0 that minimize total loss L

> Pick an initial value for w

» Compute dL/dw
W<« w —ndL/ow

. Repeat
(when update is little)




Gradient Descent
84 |

o Assume that 6 has two variables {6,, 6,}

08

07 ) . 06
06 A - : 9
04 08 2



Gradient Descent
85 |

001,000 — 15.000° "'""U_"\'Wit
13.500 \
0.500 12. OOO =

T T B

Color: Value of
Wy Of Total Loss L




Hopfully, we would reach

Gradient Descent S minima

[5507E 000 — ———15000°
se2p il 13.500 =

4 \ 6 -500

&,-099' ——

ey

.

13_500

2_ _00_

o0 —— SA 000, —

—4 2 0 2 4

Wi



Local Minima

Total
Very slow at the

plateau
Stuck at saddle point

Stuck at local minima

L /ow | oL /ow
=0 : =0 P =

The value of a network parameter w



Local Minima

o Gradient descent never guarantee global

10+

\\\\\\\\\ s

““\\ “ '1///
W7 "
\‘\“ W // o
8 \\\
":\\\\

v

0
o“\\

| Reach different minima,
so different results




Gradient Descent
89 |

This is the “learning” of machines in deep learning ......

‘ Even AlphaGo using this approach.

ctually .....

B D 2 o

| hope you are not too disappointed :p



Part |: Introduction to ML & DL
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0 Toolkits and Learning Recipe



Deep Learning Toolkit
_ 91 |

0 Backpropagation: an efficient way to compute
dL /0w in neural network

-t eden LU heano

TensorFlow
B® Microsoft

Caffe CNTK
“"DSSTNE




Three Steps for Deep Learning

Step 3: pick

the best
function

Deep Learning is so simple ......

Now If you want to find a function

If you have lots of function input/output (?) as

training data
‘ You can use deep learning



Keras

i Very flexible
h or t h cano Need some
TensorFloy

effort to learn

\

learn an
Interface of Easy to learn and use

Theano You can modify it if you can write

keras TensorFlow or Theano




Keras

0 Francois Chollet is the author of Keras.

O He currently works for Google as a deep learning engineer and
researcher.

o Keras means horn in Greek
0 Documentation: http://keras.io/

0 Example
O https://github.com/fchollet/keras/tree/master/examples

0 Step-by-step lecture by Prof. Hung-Yi Lee
o Slide
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Keras.pdf

O Lecture recording:
https://www.youtube.com/watch?v=getE6uUoLQA



http://keras.io/
https://github.com/fchollet/keras/tree/master/examples
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Keras.pdf
https://www.youtube.com/watch?v=qetE6uUoLQA

{FF Keras [\ {5

Deep LearningtfiR %

it L A b X
?ln :.-:)"; 5 ) "
vl fealelaepy s 0T

Erg e .
rlee] fethe :

REABRRBRE




Example Application
_ 9 |

0 Handwriting Digit Recognition

» “q”

MNIST Data: http://yann.lecun.com/exdb/mnist/
“Hello world” for deep learning

Keras provides data sets loading function: http://keras.io/datasets/



Three Steps for Deep Learning

Step 3: pick
define a set the best
of function function




Step 1: define a

set of function Good Results on
Testing Data?

Overfitting!
Step 2: goodness
of function

Step 3: pick the Good Results on
best function Training Data?




Overfitting
99|

Fitting training data
Degree = 1 Degree = 2 Degree = 10
= True function = True function == True function
- Model = Model = Model
@ Training data (MSE = 1.37) ® Training data (MSE = 0.70) @® Training data (MSE = 0.52)

o Possible solutions
O more training samples

o some tips: dropout, etc.



Good Results on
Testing Data?

Different approaches for different problems
e.g. dropout for good results on testing data

YES

Good Results on
Training Data?

Neural Network




Learning Recipe

Choosing proper loss
Mini-batch

New activation function
Adaptive Learning Rate

Momentum

e

Good Results on
Testing Data?
- Good Results on
Training Data?

J



Learning Recipe

Testing Data

e N
Training Data 7~ Validation Real Testing

“Best” Function f



103

Learning Recipe

Testing Data

e N
Training Data 7~ Validation Real Testing

immediately
know the




Learning Recipe
_ 104

no

modify training
process

0 Possible reasons
O no good function exists: bad hypothesis function set
- reconstruct the model architecture
o cannot find a good function: local optima
— change the training strategy



Learning Recipe

105

yes
get good results get good results on

on tralnlng set Lo dev/validation set
modify training < "
orocess [prevent overfitting

Better performance on training but worse performance on dev = overfitting

done




Concluding Remarks
o6 )

0 Basic Machine Learning

1. Define a set of functions
2. Measure goodness of functions

3. Pick the best function :
Regression
0 Basic Deep Learning
o Stacked functions Linear Model
Deep Learning SVM, Decision

Tree, KNN, etc

Non-Linear Model

Classification

Supervised Learning




Talk Outline

Variants of Neural Nets




- PART i

Variants of Neural Networks



PART Il: Variants of Neural Networks

0§
0 Convolutional Neural Network (CNN)

o Recurrent Neural Network (RNN)



PART Il: Variants of Neural Networks

o Convolutional Neural Network (CNN)

Widely used in image processing

[l



Why CNN for Image

(Zeiler, M. D., ECCV 2014)

Represented
as pixels

The most basic Use 15t layer as module Use 2"9 |ayer as
classifiers to build classifiers

Can the network be simplified by considering the properties of images?




Why CNN for Image

112

1 Some patterns are much smaller than the whole
Image

A neuron does not have to see the whole image
to discover the pattern.

Connecting to small region with less parameters

“beak” detector




Why CNN for Image

113

0 The same patterns appear in different regions.

“upper-left
beak” detector

Do almost the same thing
They can use the same

\ - set of parameters.
— s

/ “middle beak”
detector




Why CNN for Image

114

0 Subsampling the pixels will not change the object

bird
bird

We can subsample the pixels to make image smaller

‘ Less parameters for the network to process the image



Three Steps for Deep Learning

Step 3: pick

Convolutional the b§5t
Neural Network function




lmage Recognition

contalner S lr motor scooter
ip

| mite container s motor scooter ledpard

] black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah

I tick fireboat bumper car snow leopard
i starfish drilling platform golfcart Egyptian cat

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

The Whole CNN

117

> Can repeat
many times




The Whole CNN ﬂ'g

Property 1
ksl Convolution

Property 2 Max Pooling
> Can repeat
many times

Convolution
Property 3

Max Pooling




Image Recognition




Local Connectivity
a0

Neurons connect to a small region




Parameter Sharing

0 The same feature in different positions

t e
AP

Neurons share the same weights



Parameter Sharing

o Different features in the same position

\ II
-’
\ Y B
R

Neurons have different weights



Convolutional Layers
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Convolutional Layers

depth =1 depth = 2

Wh1
° @ by =wpia1+wi2a2

O C1 =We1011+W202
We2
Wy
6 . @ bo =wy1as+1wpoas

w
Wel b
/ e Co =W, A2 TW203
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Convolutional Layers

depth =2 depth =2

w
(a)— (e
@ c2 | dl

c1 = ai1wW.; + brw.o

+ agw.5 + baw, .y

Co = a9, + bow .o

+ azw.; + b3w. 4
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Convolutional Layers

deptlh =2 depth =2

| | ( ‘

H W2
> C
Wd1 1
s
<<
oG

\

C1 = a1We + brwes
+ agwes + bawey
di1 = arwgr + brwgo
+ agw gz + batwy
C2 = QW.1 + baw .o
+ azwes + bzwey
do = agwg1 + baw o

+ aswgs 4+ bzwyy




Convolutional Layers

T ——
A B C




Hyper-parameters of CNN
SN 1

0 Stride 1 Padding
ONONG® ONONG®
OO0 00O OO0 00O
Stride=1 Padding =0
O O ONONONONG

©C000O0 QOO0OO0OO0OO0W

Stride =2 Padding=1



Example
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Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2) .
X[:,:,0] wWO[:,:,0] Wl[z,:,0] o[:,:,0] Output Str|de = 2
offlofloJo o o o -1ffo ffo i K i 4 3
offoffoJo 1 o o 1t [ 0 i 5 4 2 VI (332)
oflzfft]2 2 o o 1 [f-1]f-1 1 0 -1 2 0 5 Oume XX
g 2 0 2 0 1 0 wl[:,:,1] wl[z,:,1)] ofl:,:,1] A
orooono —[LRF Tl aEe | Filter
011 0 2 5 ff1 ]t 1 -1 0 5 10 -3 )
0 0 0 /0 0 (-1 -1 0 0 1 0 6 (3X3X3)
- ll/wﬁr;/ﬁl Wl[z,:,2]
oJofoJo o L 1L
BERE o) 1 Lo |f-1 -10 1
olte 1 |o 1 3.9"1 ! ]|
NS . Bias b (1x1x1) Bias bl (1x1x1)
01 1 1.2 1 0 bOf,:,01] bl[z,:,0]
0 2 00 0 1 0
0 0 0 0
1,8,2]
o [fo [lo 0 00
offlzfo ]t o1 o
0 Jfo 1 1 0 !
01 0 2 2 2 0 Input
0 0 0 2 2 2 0 P dd — 1
0121120 Volume (7x7x3) Fadding
0 00 00 0 0

http://cs231n.github.io/convolutional-networks/



http://cs231n.github.io/convolutional-networks/

130

Convolutional Layers

Input Volume (+pad 1) (7x7x3)

Filter W0 (3x3x3)

®x[:,:,0] wli[:,:,0]
ofloflo]Jo 0 0 0 -1(o ||0
ofloflo]Jo 1 o0 o0 1 1||-1
oflzflt]2 2 0o o0 1 -1||-1
0 2 0 2 0 1 0 wO[:,:,1]
0 0 0 0 0 IIM 1
0 0 2 0 -1 1_“1_
0 0 0 Jlo -1
— wO[:,+72]
oJoJo]o o i
o 2 I i 2 1 -1
0_?“1 0 1 ﬁéll_‘lll_
s u Bias b&(1x1x1)
01 1 1.2 1 0 bOf:,:,0]
0 2 00 0 1
0 0 0 0
$,8,2]
0 (o Lﬁé 0 0.0
o 20 ]t o1 o
—— P l——
0 [o 1 1 0
01 0 2 2 2 0
0 00 2 2 2 0
01 2 1 1 2 0
0 00 0O 0O 0 O

Filter W1 (3x3x3)

wl[z,:,0]

wl[z,:,1]
1 -1 1

1 -1 0
-1 0 0

wl[z,:,2]
1 1 -1

Bias bl (1x1x1)
bl[z,:,0]
0

Output Volume (3x3x2)
o[:,:,0]
-4 3

5 4 -2
2 0 5

o[:,:,1]
-3 30

5 10 -3
1 0 6

http://cs231n.github.io/convolutional-networks/
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Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)

®[:,:,0] wi[:,:,0]
0 0 |0 0||0 0 0 -1{o flo
0 0 |0 0||1 0 0 1 1 |-1
0 2 |1 2||2 0 0 1 [-1]-1
0 2 0 2 0 1L 0 wO[:,:,1]
0 0 0 0 0

0 0o 2

0 0

X[:

0 0

0 [1 ]

0 [1 ]

i S L Bias b0A1x1x1)
il N b0 [+;:,0]
0 0 0

0 0 0 0

X[t,:,

0 0 |0 0|ch 0 0

0o 2 |o )/||0 1

0 0 1||1 0

01 0 2 2 2 0

0 00 2 2 2 0

01 2 1 1 2 0

0 0 0 0 0 0 0

http://cs231n.github.io/convolutional-networks/

Convolutional Layers

Filter W1 (3x3x3)

wl[:,:,0] o[:,:,0]
10 IS B 0 3
1 1 -1 5 4 -2
1 0 -1 2 0 5
wl[:,:,1] of[:,:,1]
1 -1 1 -3 30
1 -1 0 5 10 -3
-1 0 0 1 0 6
wl[:,:,2]

1 1 -1

-1 0 1

-1 0 -1

Bias bl (1x1x1)
bl[:,:,0]
0

Output Volume (3x3x2)


http://cs231n.github.io/convolutional-networks/

132

Convolutional Layers

Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)

x[:,:,0] wl[z:,:,0]
0 o0 (0 0||0 0 0 1o fo
() 0||1 0 0 11 -1
2 |1 2||2 0 0 1 [-1]-1
2 0 2 0 1 0 wO[2,:,1]
0 0 0
0
0

—
s

—
s

S o
)
B
[ o]
s

© o o o o o of oo o o oo of oo o o o o
_ _
b2
o

—
L=R S = =
—
—
L= S R S T

Bias bO{1x1x1)
bO[+,:,0]

Filter W1 (3x3x3)
wl[z,:,0]

-1 0 0

wl[z,:,2]
1 1 -1

Bias bl (1x1x1)
bl[z,:,0]
0

Output Volume (3x3x2)
o[:,:,0]

03

5 4 -2
2 0 5

of[:,:,1]
-3 -3 0

5 10 -3
1 0 6

http://cs231n.github.io/convolutional-networks/
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Convolutional Layers

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wl[z,:,0] wl[:,:,0] o[:,:,0]
0||0||00000 -1 0 0 11 [J1 0 4 3
0||0 ||0 01 0 0 1 1 -1 1 fl1 |f-1 5 4 -2
0||2 ||1 2 2 0 0 M Bl EL 1 ffo -1 2 0 5
0 2 0 0 o[:,:,1]
0 0 0 0 [3]3 0
0 0 2 0 5 10 -3
0 0 5 1 0 6
X | 297

[

0]

o o o opo

0 |0_ 0
0 1 0 2 2 0
o 0 0 2 2 2 0
o 1 2 1 1 2 0
o7 107 [o% [0 107 [07 [0 http://cs231n.github.io/convolutional-networks/
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Pooling Layer

134

no weights

MaX|mum Average / i
r? % VAR /
| / \

erssrassesresfessansansannan

no overlap depth=1

Max{1,3,5,7) =7 Avg(1,3,5,7)=4
Max(0,0,5,5) =



Why “Deep” Learning?

3

i




Visual Perception of Human

O
(90}
—

[}
N
[
°
c
]
=
x
o
[
E
<]
o
TR
oo
o
£
(7]
©
]
2
o
£

UOSLWIoY | uuy

http://www.nature.com/neuro/journal/v8/n8/images/nn0805-975-F1.jpg
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Visual Perception of Computer

137

Input Convolutional
Layer Layer

Pooling Convolutional
Layer Layer Pooling
| Layer

77 \ S
’ ~
AV
JR4 II \ ~

=“u“ Receptive Fields

Receptive Fields




Visual Perception of Computer
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Convolutional Max-pooling

Layer with Layer with
Receptive Fields: Width =3, Height = 3

:N :
~ 4/

- -
ﬂ ! ~

Input Layer

I’ \

/ \
~—— / \
H Filter Responses

Input Image Filter Responses




Fully-Connected Layer

0 Fully-Connected Layers : Global feature extraction

0 Softmax Layer: Classifier
Fully-Connected

Input Convolutional Layer ¢ fmax
mace Input | jver  Convolutional (¢ Laver
€ Layer  Pooling Layer VY,

Pooling

Layer

>
1

’ Layer

Wi
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Convolutional Neural Network

Step 2: Step 3: pick

Convolutional . goodness of . the best
Neural Network function function

Convolution, Max
Pooling, fully connected

- —“monkey” <[]
»D—» cat”<—>.

udog<_>m
target
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What CNN Learned

0 Alexnet

o http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

\ N

Stride

96

Conv 1: Edge+Blob

27

13

-~ 27

13 13

Max
pooling

Conv 3: Texture

Conv 5: Object Parts

- 3 > -
4+ - r 3 el BN

= 13 3 13 Q: % 3 dense

3 -

384 384 256
Max
Max pooling
pooling
Numerical Data-driven

dens

100¢

409¢ 4096

cock
a1qe) Sutuuip

ship

©
=3
&
c
2
2
=}
e

Fc8: Object Classes

http://vision03.csail.mit.edu/cnn_art/data/single layer.png



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://vision03.csail.mit.edu/cnn_art/data/single_layer.png

DNN are easily fooled

State-of-the-art DNNs can recognize 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects
Input
|
‘ ‘ R Mutation
\
\
X \;\Vﬁ Evolved images > A
z Mw:\v.\\ < O
i 989 |
3 })}:;;:‘?\\ Evolutionary Crossover
2 ’ Algorithm
3 )«r/«»‘«w\\ »O
i Label and Score v
| ‘ I Selection

AAA
NAAA

king penguin |

a
o
=
@
5

0001

oony
000

Lrasoponnt
10000000801
%igg?

freight car remote control peacock grey

centipede peacock Jjackfruit bubble




Visualizing CNN

143

filter
flower
response
random filter
noi
O15€ response

.




Gradient Ascent

144

0 Magnify the filter response lower
random filter

noise: X response: f

higher
score score

*
*
*
*
*
*
0

» X

OF

gradlent —
0x



Gradient Ascent
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o Magnify the filter response lower

higher
random filter score score
noise: X response: f H

1,9

update X

OF
X<—XT7N = » X

o L OF
gradlent —
learning rate X




Gradient Ascent




Different Layers of Visualization




Multiscale Image Generation

visualize resize

visualize

resize

visualize




Multiscale Image Generation
3
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http://deepdreamgenerator.com/

CNN

3.9
—1.5
2.3

i




Deep Dream
http://deepdreamgenerator.com/

0 Given a photo, machine adds what it sees ......
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Deep Style

http://deepdreamgenerator.com/

0 Given a photo, make its style like famous paintings

.
LAY
Yy

vy




Deep Style
http://deepdreamgenerator.com/
153
I sSss

0 Given a photo, make its style like famous paintings

A0 N G N TR R ST
. ¢ -...- ‘! Bl . ;," ﬂ' F
e RO




Dee p Style A Neural Algorithm of Artistic Style

https://arxiv.org/abs/1508.06576




Neural Art Mechanism

Computer Neural Network




Go Playing

Next move
» Network » (19 x 19
positions)
L 00ee .+ 6 6 :
§ 19 x 19 matrix g 19 % 19 vector

(image)

Black: 1 Fully-connected feedforward
white: -1 network can be used

none: 0 But CNN performs much better.
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More Application: Playing Go

Training:

record of

previous plays

E. 5 h->H: Kko—-2.H75..

Target:
119&7.511 — 1

else=0

Target:
“hZz5"=1

else=0




Why CNN for playing Go?
sy

1 Some patterns are much smaller than the whole
Image

Alpha Go uses 5 x 5 for first layer ‘j)‘
!

0 The same patterns appear in different regions

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE




Why CNN for playing Go?

159

0 Subsampling the pixels will not change the object

‘ Max Pooling ‘ How to explain this???

Neural network architecture. The input to the policy network isa 19 x 19 x 48
image stack consisting of 48 feature planes. The first hidden layer zero pads the
inputintoa 23 x 23 image, then convolves k filters of kernel size 5 x 5 with stride

1 with the input image and applies a rectifier nonlinearity. Each of the subsequent

hidden lavers 2 to 12 zero pads the respective previous hidden laver into a 21 x 21
image, then convolves k filters of Kernel size 3 x 3 with stride 1, again followed

by a rectifier nonhnearlty The final layer convolves 1 filter of kernel size 1 x 1
with stridg
tion. The
Data Table 3 additionally show the results of training with k=128, 256 and

384 filters.




PART Il: Variants of Neural Networks

]

1 Recurrent Neural Network (RNN)

Neural Network with Memory



Example Application
_ 161 |

o Slot Filling

! | would like to arrive Taipei on November Z”d.]

\ 4

Destination: Taipei

/
Slot <

time of arrival: November 2nd



Example Application
_ 162 |

Solving slot filling by Y1 Y2
feedforward network? ! !
Input: a word

(Each word is represented as a vector) ><

Taipei ‘l_x1 EZ_‘




1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size. apple = :_1 0 0 0 O]
Each dimension corresponds bag =[0 1 0 0 0]
to a word in the lexicon cat =[0 0 1 0 O
The dimension for the word dog =[0 0 0 10
is 1, and others are O elephant =[0 O 0 O 1]




Example Application

164
Solving slot filling by dest  time of departure
feedforward network? Y, Y,
Input: a word
(Each word is represented as a vector) @
Output:
probability distribution that the

input word belonging to the slots

Taipei




Example Application
_ 165 |

A|arrive|Taipei on November 2“d] dest  time of departure

! Vool b Vi Vs
other  dest other time  time @ @
Problem? g :
A | leave | Taipei on November 2”0'] ><

}

place of departure




Three Steps for Deep Learning

Step 3: pick
Recurrent the b.est
Neural Network function
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Recurrent Neural Network (RNN)

The output of hidden layer @ @
are stored in the memory. . ‘_
- %\% =
\ /%

Memory can be considered X, X,
as another input.




RNN

The same network is used again and again.

168

Probability of Probability of Probability of
“arrive” in each slot  “Taipei” in each slot  “on” in each slot

x3

/

arrive Talpei on November 2“0']




Different

Prob of “leave” Prob of “arrive”
in each slot in each slot

The values stored in the memory is different.






Bidirectional RNN




RNN

Step 3: pick
Recurrent the best
Neural Network function




Learning Target

X2

Xl
Training L/
arrive Tai

Sentences: pei on November 2”d]

other dest other time time



Rough Error Surface

The error surface is either
very flat or very steep.

'0.25
'0.20
'0.15
'0.10
'0.05

$SO7 |e10]




Rough Error Surface

Large Small
dL/ow Learning rate?
small Large
dL/ow Learning rate?
— 999
y1 2 y3 1000
Toy Example
‘ 1 ‘ 1 1 1
— —— I/ —
1 1 1 1




RNN Applications

Probability of Probability of Probability of
“arrive” in each slot  “Taipei” in each slot  “on” in each slot

1 2

Input and output are both sequences
with the same length

NG X3

arrive Taipei on November Z”d]




Many-to-One

0 Input is a vector sequence, but output is only one vector

73 ==

Sentiment Analysis ‘ B YF S
B
@ 7=
ETEHEEE | | EXETAEY SEERR 2 5

SEREH ... B,

@ o5
=~ B2

Positive (IFEE) Negative (BE38) Positive (IEE) ‘ e

T
]



Many-to-Many (output is shorter)

178

0 Both input and output are both sequences, but the output is
shorter.

O E.g. Speech Recognition

Problem?

“Yf

9},-._%;

Why can’t it be

;7-1—;”

Output: “§¥#%” (character sequence)

LI

17 4542

-

111

:;r‘__i__‘-z
I

o 111
ANl e Rl

s
111
11

|

(vector
seguence)



Many-to-Many (output is shorter)

179

o Both input and output are both sequences, but the output is
shorter.

o Connectionist Temporal Classification (CTC)

g fE Add an extra symbol “¢”  «iFiE1E”

i representing “null”

o

|
1

I b= 15
SERRERE
J1HH



Many-to-Many (Output has no limitation)
_ 180 |

0 Both input and output are both sequences with different
lengths. - Sequence to sequence learning

o E.g. Machine Translation (machine learning> 1%z 2 &)

T
s

\ Containing all

information about
iInput sequence

aulydew
duluses|




Many-to-Many (Output has no limitation)

0 Both input and output are both sequences with different

lengths. - Sequence to sequence learning

o E.g. Machine Translation (machine learning—> 1% 28

=

s

T

A

aulysew —

duluies] —

o

T

\

v/

— [

AN
V1)

v

J U U

Don’t know when to stop




Many-to-Many (Output has no limitation)




Many-to-Many (Output has no limitation)
_ 183 |

0 Both input and output are both sequences with different
lengths. - Sequence to sequence learning

o E.g. Machine Translation (machine learning> 1% g3 &2 )

m B B
VAVAVAY,

Add a symbol “===" ()

— [

aulydew
duluses|




Image Caption Generation
_ 184 |

o Input an image, but output a sequence of words

A vector Caption Generation

for whole

image woman s ===
\ I\ I\ AN !

Input
b —-1 P

& & image
Bk G 4 i}

e 2 'u‘.-_~' ey

2 i GEal A =) 4V




Image Caption Generation




Video Caption Generation

A group of people is
knocked by a tree. walking in the forest.




Chit-Chat Bot

187
W | am fine <EOL>

|

b o b o e

How are you <EQOL>

LSTM Decoder

LSTM Encoder

(~40,000 sentences) * 3= B 48 41 A 2= Vit o

/1T

R

mull



Sci-Fi Short Film - SUNSPRING

-

. SUNSPRING B




Attention and Memory
_ 189 |

What you learned in
these lectures

N
What is deep

learning?

Breakfast today

/

summer
vacation 10
years ago

Answer« Organize



Attention on Sensory Info

Information from the

When the input is a very
sensors (e.g. eyes, ears)

long sequence or an image

- Pay attention on partial of

Sensory Memory the input object each time

Attention

Working Memory

Encode Retrieval

Long-term Memory



Machine Translation

191

0 Sequence-to-sequence learning: both input and output are
both sequences with different lengths.

0 E.g. ) XEEE > deep learning

Information of the
whole sentences

— do9p
_/
— 3uluJed]
S
— <dN3>

RNN RNN

\ 1

]

¥ —
.
B —

[]

s
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Machine Translation with Attention

what s [N >

o » Cosine similarity of
Zandh

Z

» Small NN whose input is
Z and h, output a scalar

hl h2 , h3 h4
T > a=hTWz
s E == = How to learn the parameters?
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Machine Translation with Attention

. (04
.
(D
©
t 1
h Z
70— 71

How to learn the
t parameters?

As RNN input

¢0 = z aihi = 0.5k + 0.5h?




Machine Translation with Attention




Machine Translation with Attention

195

1
C —
. o 5
D -
) =3
© >
0.0&{ 0.0@f 0.5a; 0.5af \on
1) ) 1 1)
softmax f f
t t, t, 70 = 71 = 72
a1 aq a1 t

- A
'



Machine Translation with Attention

196

Al —

R

'

21>

?d
duluies)

The same process repeat until

generating

<END>




Speech Recognition with Attention

Alignment between the Characters and Audio

<s

<s

<s

Hypothesis

<s

ace>

ace>

ace>

ace>

Chan et al., “Listen, Attend and Spell”, arXiv, 2015 .
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Image Captioning

0 Input: image

0 Output: word sequence

A vector for

whole image 1 \ 1\

woman




Image Captioning with Attention

199

CNN

A vector for each region

filter T filter '¥ filter |
' filter \ filter ‘ filter

y

filter T filter ¥ filter |
filter Y filter ' filter




pAV]

Image Captioning with Attention

CNN

A vector for each region

filter T filter '¥ filter |
' filter \ filter ‘ filter

filter T filter '¥ filter |
filter Y filter ' filter




Image Captioning with Attention

Word 1 Word 2

A vector for each region

1) )
t weighted
i r i r ' i r | .
CNN f"tf'f,l F'f"f.l F"tf’f_l weighted sum
' filter 'y |ter‘ ilter sum ZR

0.0 0.8 0.2

y

filter T filter '¥ filter |
tilter Y filter ' filter




Image Captioning

202

1 Good examples

A stop sign is on a road with a
mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Image Captioning

203

0 Bad examples

A Iarge white b|rd standing in a forest. A woman holding a clock in her hand. A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.




Video Captioning

Ref: A man and a woman ride a motorcycle

A man and a woman are talking on the
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Video Captioning

Ref: A woman is frying food
Someone is frying a fish in a



Reading Comprehension

206

Sentence to Extracted
vector can be Information
jointly trained.

Document

-



Reading Comprehension

207

Extracted
ICINOALEIG R  Information E> m
Hopping




Extract information
Extract information
Compute attention

Computte attention
I

\

Memory Network

N

208

2
o

t
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Memory Network

o Muti-hop performance analysis

Story (16: basic induction) Support| Hop1 | Hop 2 | Hop 3
Brian is a frog. yes 0.00 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. yes 0.07 0.00 -
Julius is green. 0.06 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow




Attention on Memory

Information from the

When the input is a very
sensors (e.g. eyes, ears)

long sequence or an image

- Pay attention on partial of

Sensory Memory the input object each time

Attention

Working Memory In RNN/LSTM, larger memory

implies more parameters

Encode Retrieval

Increasing memory size will
Long-term Memory ) =asins T y
not increasing parameters




Neural Turing Machine

o Von Neumann architecture
o Neural Turing Machine is an advanced RNN/LSTM.

Arithmetic

Logic
Unit

Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.


https://www.quora.com/How-does-the-Von-Neumann-architecture-provide-flexibility-for-program-development

Neural Turing Machine
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0Mo

/Retrieval
= process

@

1 212 2,3 L4
my my mg mg | Long term
memory

Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine
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1
kl 1

al = (1—A)a} (simplified)
+Acos(mb, k*)

Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine
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Encode
process

\. S

(element-wise)

~1 A2 A3 A4
dog Xpg Ay Qg

mg mg mg mg

Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine
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T

I B e e A-1 ~
(10 0(0 0 O 2 2
1 2 3 4

my my my mg ms; m5

-3 -4
a, oAy
m; mj

Zhang et al.,

“Structured Memory for Neural Turing Machines,” arXiv, 2015.




Concluding Remarks
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0 Convolutional Neural Network (CNN)

Input Convolutional

/ ( Pooling Convolutional
. Pooling

7 »
4l -

AN
A S N
/, / \ \\~“~~
VA N

o Recurrent Neural Network (RNN)
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Talk Outline

Beyond Supervised Learning

& Recent Trends
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Beyond Supervised Learning & Recent Trend



Introduction

20
0 Big data # Big annotated data

0 Machine learning techniques include:
o Supervised learning (if we have labelled data)
O Reinforcement learning (if we have an environment for reward)

o Unsupervised learning (if we do not have labelled data)



Machine Learning Map

Scenario Task Method

Semi-Supervised Learning

Transfer Learning

Unsupervised Learning

Reinforcement Learning




Outline

a2y
0 Semi-Supervised Learning

0 Transfer Learning

0 Unsupervised Learning
o {EZ A/ Representation Learning
o P4 A Generative Model

1 Reinforcement Learning




Outline

22
0 Semi-Supervised Learning

[

[
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Semi-Supervised Learning

Labelled
data

Unlabeled
data

(Image of cats and dogs without labeling)
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Semi-Supervised Learning

o Why semi-supervised learning helps?

The distribution of the unlabeled data provides some cues




Outline

2 |
u

o Transfer Learning

[



Transfer Learning

Labelled
data

Labeled = %
data
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Transfer Learning

0 Widely used on image processing
O Using sufficient labeled data to learn a CNN

o Using this CNN as feature extractor
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Il‘r

Transfer Learning Example

354 online

e
1BEHIE

5t

‘T—rEU

= EA
Lnt@ =

B

II"

2= online

LJ\ =g
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0 Unsupervised Learning
o {EZ A/ Representation Learning
o P4 A Generative Model




Outline

e
u

[

0 Unsupervised Learning
O
O
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Unsupervised Learning

0 The unlabeled data sometimes is not related to the task

Labelled
data

Unlabeled
data

(Just crawl millions of images from the Internet)



Unsupervised Learning
_ 232 |

LB A amer

LI
I

only having
function input

only having
function output

code



Unsupervised Learning

23
0 How does self-taught learning work?

1 Why does unlabeled and unrelated data help the tasks?



Latent Factors for Handwritten Digits
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Topics

gene 0.04
dna 0.02
genetic 0.01

_

life 0.02
evolve 0.01
organism 0.01

crr

o

brain 0.04
neuron 0.02
nerve 0.01

_

data 0.02
number 0.02
computer 0.01

Latent Factors for Documents

Topic proportions and
Documents assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all thar tar

How many genes does an SE8ARISRIncgd to  comparison to the 75,000 ¢s i the hu

part " especially in

wnoe, notes Siv Andersson oSy

<l T
ip with acones

supvive? Last week ar the genome meeting

here,™ two genome researchers with radically University in
different approaches presented complemen- | 800« F
tary views of the basic genes needed for il

One research team, using computer analy
ses o compare known 1 concluded more gen
that todin’s BEERESINC an be sustained with sequenced. Tt may
just 250 genes, and that the carliest life forms — any newly

mated that for this orgar
SC0 genes are plenty
job—but that anything short

required a mere 128 es. The — Arcady Mushegian, a computationa - /
other researcher mapped genes 7 lecular biologist at the Natiag T L
in a simple parasite and esti- / ) L
/ Haemophios
. Fenome \ i

of 100 wouldn't be enough \\
Although the numbers don't
m ”(h P['K'(l‘(l\. ll]i s¢C | L {§ i“ tons

* Genome Mapping and Sequenc- S~—
ing. Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modern and ancient genomes

SCIENCE o VOL 272 ¢ 24 MAY 1996

o




Latent Factors for Recommendation




Latent Factor Exploitation

0 Handwritten digits

ﬂﬂ =. 2 The handwritten images are
- composed of strokes
v b=+

Strokes (Latent Factors)

e |[£Q] -

No. 1 No. 2 No. 3 No. 4 No. 5




Latent Factor Exploitation

Strokes (Latent Factors)

" |lo]l/ 0' -

No. 3 No4

Nol

Represented by 1 01 0 1 0 ...
28 X 28 =784 pixels (simpler representat|on)
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0 Unsupervised Learning
o {EZ A/ Representation Learning
O



Autoencoder

0 Represent a digit using 28 X 28 dimensions

0 Not all 28 X 28 images are digits

Compact
NN
Encoder » code rehpresentatisn of
the input object
28 X 28 =784 Usually <784
Learn together

Can reconstruct
the original object

NN
code
— » Decoder

-3




Autoencoder
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Minimize (x — y)?

1 As close as possible
encode decode
[ = =
w w’
hidden layer
Input layer Bottleneck layer

output layer

a=c(Wx+b) y=cWa+b)



242

Autoencoder

0 De-noising auto-encoder

As close as possible

encode

=)

w




243

Deep Autoencoder

As close as possible

Initialize by RBM
layer-by-layer




Deep Autoencoder

Gl / 2 3 4
Deep

0 /& 3 4

Auto-encoder




Feature Representation




Auto-encoder — Text Retrieval

Vector Space Model Bag-of-word

this (&

® word string: ° .
“This is an apple” @ &
an .

apple £

pen £

O r FF O Kk K.

document




Autoencoder — Text Retrieval

European Community

Interbank markets monetary/economic

B amay s
. v DRV ¢
« BT e » ~

Disasters and
accidents

i . By + LA :’... )
2 2 iy (e, %
125 i S R e '{-"E(":.:f o e
Leading economic® . 3 . = -';-:“ Legal/judicial
indi sl e &3 ‘ 2., Vo
indicators g -5 ST S . \
. h- )
)\ o e, Government
Py A ! :\-_f.~ 3
Accounts/ . "jf,' R borrowings
eamings 1;

250

500

2000 O 000

Bag-of-word (document or query)

The documents talking about the
same thing will have close code
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Autoencoder — Similar Image Retrieval

o Retrieved using Euclidean distance in pixel intensity space

dist: 0.0

f)




Autoencoder — Similar Image Retrieval

(crawl millions of images from the Internet)



Autoencoder — Similar Image Retrieval

o Images retrieved using Euclidean distance in pixel intensity
space

dist: 0.0 dist: 3064.2 dist: 3094.1 dist: 3132.4
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Autoencoder for DNN Pre-Training

0 Greedy layer-wise pre-training again

output 10
500
g *
S 1000
b~

Input 784 Input
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Autoencoder for DNN Pre-Training

0 Greedy layer-wise pre-training again

output 10
500 a'
g *
< 1000
I~

Input 784 Input X
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Autoencoder for DNN Pre-Training

0 Greedy layer-wise pre-training again

output

Target
[N
o
o
o

Input 784 Input X



Autoencoder for DNN Pre-Training

0 Greedy layer-wise pre-training again : :
Find-tune via backprop

output 10

output 10 Random
% 1w init
500 500
] . » VR w
|§ 1000 1000
2 R w
1000 1000

* VR w

Input 784 Input 784 X



Word Vector/Embedding

o Machine learn the meaning of words from reading
a lot of documents without supervision

o tree
o flower
dog i
erun . .rabblt
®jump cat




Word Embedding
S
o Machine learn the meaning of words from reading

a lot of documents without supervision

0 A word can be understood by its context
" Yousshall know a word by the

company it keeps

RN~ FHZRTL are

something very similar

|

% 21, 520E E 5B

22T Y 5205 E G
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Prediction-Based

1-of-N

encoding
of the

word w,_,

1

The probability
for each word as
the next word w,

» Take out the input of the
neurons in the first layer

Z,

» Use it to represent a
word w

» Word vector, word

o tree
o flower
.rabbit ®run

® ojump
cat

embedding feature: V(w)




Prediction-Based
o258 |

. Neural .
K Network | =g
Collect data: Neural
\ - By — . ama B
BiK BT RE A0S . Network
A AE H ..
rgEgE \s —.. e Neural
......... ’TJE Network - > %DE
e Neural -
3 Network =

Minimizing cross e|:1tropy




Prediction-Based

i
/Bt
<

S

EEUIL

Training text:

=5 ++

. R

Wi_1

—“++
...... S
Wi

. (WO

= F5

B5=

You shall know a word by
~ the company it keeps

TLE ...

W.

EZEmME......

Wi

The probability

] > for each word as
) the next word w;

“BEm "

should have large
probability

3%
N

At
B

il
/Ht




Various Architectures

o Continuous bag of word (CBOW) model

...... W, 4 Wiiq oeeeee Neural

\/\j w,, — Network : !

...... W. Neural

> P
\ ; Network ‘
T Wiy
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Word2Vec LM

0 Goal: predicting the next words given the proceeding
contexts

https://ronxin.github.io/wevi/



https://ronxin.github.io/wevi/

Word2Vec CBOW

2
0 Goal: predicting the target word given the surrounding words

p(wt | Wt—m,y " Wt—1, W1, " awt—l—m)

https://ronxin.github.io/wevi/



https://ronxin.github.io/wevi/
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Word2Vec Skip-Gram

0 Skip-gram training data:
apple|drink?juice,orange | eat”apple,rice|drink?juice,juice | drink milk, mil
k|drink”rice,water |drinkmilk,juice |orange”apple,juice |apple*drink,milk
| ricerdrink,drink | milk*water,drink | water”juice,drink | juice water

orange . é
rice () :-:::'/ // <

https://ronxin.github.io/wevi/



https://ronxin.github.io/wevi/

Word Embedding
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Word Embedding

sy
0 Characteristics
V(hotter) — V(hot) = V(bigger) — V(big)
V(Rome) — V(Italy) = V(Berlin) — V(Germany)
V(king) — V(queen) = V(uncle) — V(aunt)

1 Solving analogies
Rome : Italy = Berlin : ?

Compute V(Berlin) — V(Rome) + V(taly)
Find the word w with the closest V(w)

V(Germany)
~ VV/(Berlin) — V(Rome) + V(Italy)
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0 Unsupervised Learning
O

F
d

045 Generative Model
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Creation




Creation

o268 |
1 Generative Models

O https://openai.com/blog/generative-models/

‘~1,V haA f) G Nﬂ @ ’")‘Qj‘/z

0o et umcdoritimel

e A »/A[J‘?/K Freods

Jg-u- Halé

WES S \\/hat | cannot create,

: | Mo Loowan st Hgs
e | do not understand.
() L= e
g Richard Feynman
& L =1 P i
N

4
© Copyright California Institute of Technology. All rights reserved.
Commercial use or modification of this material is prohibited.

~



https://openai.com/blog/generative-models/

PixelRNN

0 To create an image, generating a pixel each time

E.g. 3 x 3 images .»“».
52 e
TL Illl}“*'

Can be trained just with a large collection
of images without any annotation




PixelRNN

Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv preprint, 2016



PixelRNN — beyond Image

Z | I
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Generative Adversarial Network (GAN)

272

What are some recent and potentially upcoming
breakthroughs in unsupervised learning?

Written Jul 29 - Upvoted by Joaquin Quifionero Candela, Director Applied Machine
Learning at Facebook and Huang Xiao

e Yann LeCun, Director of Al Research at Facebook and Professor at NYU &4_

Adversarial training is the coolest thing since sliced bread.
I've listed a bunch of relevant papers in a previous answer.
Expect more impressive results with this technique in the coming years.

What's missing at the moment is a good understanding of it so we can make it work
reliably. It’s very finicky. Sort of like ConvNet were in the 1990s, when I had the reputation
of being the only person who could make them work (which wasn't true).

Ref: Generative Adversarial Networks, http://arxiv.org/abs/1406.2661



Discriminative v.s. Generative Models

273
0 Discriminative 0 Generative
o learns a function that maps O tries to learn the joint
the input data (x) to some probability of the input
desired output class label data and labels
(v) simultaneously, i.e. P(x,y)
- directly learn the conditional - can be converted
distribution P(y[x) to P(y[x) for classification via
T Bayes rule

f el Dat) p(Data, No Zebra)
. ) 2 01t [p(Data, Zebra)|
o e ; =5cl?ata 60 70 % M 0.05
ey 4
X = data

! 4 0
I'mM note-Zthra - il ‘

Advantage: generative models have the potential to understand and explain
the underlying structure of the input data even when there are no labels




R RYES
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Generator

275

0 Decoder from autoencoder as generator

encode decode
w w'
hidden layer
Input layer S code output layer



Generative Adversarial Networks (GAN)

276

0 Two competing neural networks: generator & discriminator

‘ noise ’

forger trying to produce
some counterfeit material 8€Nerator

data sample} { discriminator H ggg;rslt:r ]

the police trying to detect data
the forged items sample?

Training two networks jointly = the generator knows how to adapt its
parameters in order to produce output data that can fool the discriminator



Generator Evolution

277

NN
Generator

NN NN
Generator - Generator -
vl V2 v3
o

3 0000
v v

Discri- Discri- Discri-
mmator - mlnator
Binary /

mmator
OERIIEIE  Real images: by 0 I/




Cifar-10

1 Which one is machine-generated?

R

https://openai.com/blog/generative-models/




Generated Bedrooms




Comics Drawing




Comics Drawing

SRBcA A A A A A

—BEDX v T U5 —HITTHERT.
AIITKIFEERRERNI ML zm< BLTWS
http://qiita.com/mattya/items/e5bfe5e04b9d2f0Obbd47




Pokémon Creation
282 |

0 Small images of 792 Pokémon's
o Can machine learn to create new Pokémons?

Don't catch them! Create them!

o Source of image:
http://bulbapedia.bulbagarden.net/wiki/List _of Pok%C3%A9
mon_by base_stats (Generation VI)

Original image is 40 x 40 . A |
Making them into 20 x 20 HEQQ'GEE .




Pokémon Creation
283 |

» Each pixel is represented by 3 numbers (corresponding

to RGB)
- R=50, G=150, B=100

» Each pixel is represented by a 1-of-N encoding feature

7N

Clustering the similar color ‘ 167 colors in total



Pokémon Creation

Real
Pokémon

Never seen

by machine!

It is difficult to evaluate generation.

Cover 50%

Cover 75%




Drawing from scratch

Pokémon Creation

Need some randomness

l a-h

R
b o} .ﬁ
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¥ ;- 3 |-Iuﬁ iﬁ




Pokémon Creation

input »

NN
Encoder

F

o

NN
Decoder

NN
Decoder

» output
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Pokemon Creation - Data

o Original image (40 x 40):
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML 2016/Pokemon_creation/image.rar

o Pixels (20 x 20):
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML 2016/Pokemon_creation/pixel color.txt

o Each line corresponds to an image, and each number corresponds to a pixel
m http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML 2016/Pokemon creation/colormap.txt

255 255 255

DO00D0DO0DO0DO00O0O0O0O0O0000000O0GOGDO0 0 $3 88 G5
000194134001900000000000\/'
000D01200000000000000G00 1 45 49 43
00000001144 74 44 51 0000000 0 /135195135
Doo0DO0OO0OO0O01121E80808l00000000 2 61 51 51
DOO00DO0O012318 3522052000000 54 54 54
93 94 93 93 BS 95 38 96 97 98 99 99 &7 99 9 187 187 187
0O0O0DO0O0O21 106 106 106 106 106 &1 107 0 23 83 83

S0 51 S2
251 251 251
$2 52 S2


http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Pokemon_creation/image.rar
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Pokemon_creation/pixel_color.txt
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Pokemon_creation/colormap.txt
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o Reinforcement Learning



Reinforcement Learning

that

Environment



Reinforcement Learning
_ 292 |

]

Al
|

|
-,

<

Environment
Agent learns to take actions to maximize expected reward.




Supervised v.s. Reinforcement

0 Supervised 8 4[
e | . ”He”o” ] “wyy:n
“Learning from teacher Say "Hi

77777777777777777777777777777777777777777777777777777777777777777777 8 ﬁ”Bye bye”] Say “Good bye”

0 Reinforcement

5




Scenario of Reinforcement Learning
=N

Observation> Action

{0+ AlphaGo

If win, reward =1

If loss, reward =-1

Otherwise, reward =0

Environment

Agent learns to take actions to maximize expected reward.




Supervised v.s. Reinforcement
25y

0 Supervised Learning o Reinforcement Learning
o Training based on O Training only based on
supervisor/label/annotatio reward signal
n o Feedback is delayed
O Feedback is instantaneous o Time matters
o Time does not matter o Agent actions affect

subsequent data




Reinforcement Learning

206
o RLis a general purpose framework for decision making
o RLis for an agent with the capacity to act
o Each action influences the agent’s future state
O Success is measured by a scalar reward signal
O Goal: select actions to maximize future reward




RL Difficulty

207 0
0 Goal: select actions to maximize total future reward
o Actions may have long-term consequences
o Reward may be delayed

o It may be better to sacrifice immediate reward to gain more
long-term reward

G STs fomiR.
UWivw.cHRcTooN Cota




Deep Reinforcement Learning

Observation

Function
Input

Used to pick the
best function

Action

Reward

<

Function
Output

Environment




Major Components in an RL Agent

200
o An RL agent may include one or more of these components

o Policy: agent’s behavior function
o Value function: how good is each state and/or action

o Model: agent’s representation of the environment



Maze Example

s0
0 Rewards: -1 per time-step

o Actions: N, E,S, W

1 States: agent’s location

Start

Goal




Maze Example: Policy

son
0 Rewards: -1 per time-step

o Actions: N, E,S, W

1 States: agent’s location

> { oo



Maze Example: Value Function

2§
0 Rewards: -1 per time-step

o Actions: N, E,S, W

1 States: agent’s location

Start | -16

-11
. -12

18 | -

-
-1




E2E RL Task-Completion Bot

o Simulated User

O Generate interactions based on a predefined fake goal

o Automatically learn strategy by training on the simulated data
User goal: Two tickets for “the witch” tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can | get 2 tickets for the witch?
Agent: Which theater do you want?

User: Regal meridian 16

Agent: What time would you like to see it?
User: 9:30 pm

Agent: What date would you like to see it?
User: Tomorrow!

(" Agent: How many people are you? Y

{ User: Just two adults. |
Agentr Whatisyour location?™ — — — 7
User: Seatflel o o o o o e e e - =

/ Agent: What kind of video format do you like? \
User: Oh, any kind is okay. I
Agent: Do you have any price constraint?
QUser:No, | don’tcare. _ _
Agent: Great - | was able to purchase 2 tlckets for you to
see the witch tomorrow at regal meridian 16 theater in
Seattle at 9:30 pm.

User: Thank you.

Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM

User: Can | get 2 tickets for the witch?

Agent: What date would you like to see it?
User: Tomorrow

Agent: Which theater do you prefer?

User: Regal meridian 16

Agent: What is your location?

User: Seattle

Agent: What time would you like to see it?
User: 9:30 pm.

Agent: Great - | was able to purchase 2 tickets for you
to see the witch tomorrow at regal meridian 16
theater in Seattle at 9:30 pm.

User: Thanks.

Agent: Thanks!



More applications

os4
o AlphaGo, Playing Video Games, Dialogue

0 Flying Helicopter

O https://www.youtube.com/watch?v=0JL04JJjocc

0 Driving
O https://www.youtube.com/watch?v=0xo1Ldx3L5Q

1 Google Cuts Its Giant Electricity Bill With
DeepMind-Powered Al

o http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-
its-giant-electricity-bill-with-deepmind-powered-ai



https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=0xo1Ldx3L5Q
http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai

Concluding Remarks
_ 305 |

0 Semi-Supervised Learning Semi-Supervised Learning

0 Transfer Learning Transfer Learning

0 Unsupervised Learning

Unsupervised Learning

o {EZ A/ Representation Learning
o B4 A Generative Model

1 Reinforcement Learning Observation g Action
REa .

Reinforcement Learning

Environment
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